
Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Technical Report
1194

A Study of Gaps in Cyber
Defense Automation

G.K. Baah
T. Hobson

H. Okhravi
S.C. Roberts

W.W. Streilein
S.C. Yuditskaya

13 October 2016

This material is based on work supported by the Department of Defense
under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.

Approved for public release: distribution unlimited.

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and

development center operated by Massachusetts Institute of Technology. This material is based on

work supported by the Department of Defense under Air Force Contract No. FA8721-05-C-0002

and/or FA8702-15-D-0001. Any opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the Department

of Defense.

© 2016 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

A Study of Gaps in Cyber Defense Automation

G.K. Baah
H. Okhravi

S.C. Roberts
W.W. Streilein

S.C. Yuditskaya
Group 58

T. Hobson
Formerly Group 58

13 October 2016

Massachusetts Institute of Technology
Lincoln Laboratory

Technical Report 1194

Lexington Massachusetts

Approved for public release: distribution unlimited.

This page intentionally left blank.

EXECUTIVE SUMMARY

Cyber defense automation (CDA) refers to automated response and recovery from cyber at-
tacks while still preserving a certain level of mission functionality. The vision of CDA research is
to build self-healing, self-immunizing systems. Seven major components are necessary to achieve
this vision: attack/vulnerability detection, attack/vulnerability analysis, impact blocking, recov-
ery, vulnerability patching, system cleansing, and an optional active response component (e.g.,
deception or counterattack). In this report, by reviewing the state of the art for each of these
components, we identify high-priority, short-term research objectives for CDA components, which
includes designing low false positive vulnerability detection techniques, developing scalable and fast-
impact blocking mechanisms, accurately identifying the location of vulnerabilities, developing new
roll-back techniques, evaluating various deception options, and using sanitization techniques for
improved cleansing of compromised systems. These efforts will constitute the basic blocks of an
effective and automated CDA system.

iii

This page intentionally left blank.

TABLE OF CONTENTS

Page

Executive Summary iii

List of Figures vii

List of Tables ix

1. INTRODUCTION 1

1.1 Goals 1

1.2 Scope 1

2. OVERVIEW OF A CYBER DEFENSE AUTOMATION SYSTEM 3

3. METHODOLOGY 7

3.1 Gap Discovery Process 7

3.2 Gap Selection Process 7

3.3 Gap Treatment and Classification Process 7

3.4 Gap Prioritization Process 8

4. GAPS AND RESEARCH DIRECTIONS 9

4.1 Gaps in Vulnerability Detection 9

4.2 Gaps in Attack/Vulnerability Analysis 14

4.3 Gaps in Blocking 14

4.4 Gaps in Recovery 18

4.5 Gaps in Patching 21

4.6 Gaps in Cleansing 28

4.7 Gaps in Active Response 29

5. SUMMARY OF RESEARCH DIRECTIONS AND PRIORITIZATION 35

6. CONCLUSION 39

References 41

v

This page intentionally left blank.

LIST OF FIGURES

Figure

No. Page

1 Components of a cyber defense automation system. 3

2 CDA component dependencies. 35

vii

This page intentionally left blank.

LIST OF TABLES

Table

No. Page

1 CDA Component Priorities 37

ix

This page intentionally left blank.

1. INTRODUCTION

Cyber defense has traditionally been an uphill battle. While defenders have to protect all
components of a system, attackers have to find only one or a small number of vulnerabilities to
successfully compromise the system. Moreover, the high cost of triaging attacks, developing patches,
and cleaning up the damages often allows attackers to be one step ahead of the defenders. Most
attacks also operate in the machine timescale (milliseconds), while defenders and operators work
in the human timescale (hours/days), thereby impeding fast remediation of attack damages.

Cyber defense automation (CDA) can rebalance the landscape by making responses to cyber
attacks faster, more seamless, and more automated. The vision of CDA is to create a self-healing,
self-immunizing system that can detect, triage (analyze), block, and recover from cyber attacks.
Moreover, such a system must be able to automatically develop patches to fix vulnerabilities,
remove the presence (persistence) of the attacker from compromised systems, and provide misin-
formation/deception to the attacker.

In the current cyber landscape, there are vast challenges for achieving a self-healing, self-
immunizing system. Major gaps in software and vulnerability analysis make the attack analysis
and automated development of patches difficult. Moreover, because of the expressiveness and
generality of modern systems, it is often possible to achieve the same malicious effect through
various means. This makes blocking of attacks difficult to achieve. As a result, in the short and
medium term, progress in this area is likely to be incremental.

1.1 GOALS

This report identifies the major gaps and challenges that currently exist in achieving the CDA
vision. By analyzing the state of the art in CDA research, we identify and prioritize the important
gaps that need to be researched in order to construct a self-healing, self-immunizing system.

The goal of this study is to find technical gaps within research projects that can be addressed
in the short term to make effective headway in building a CDA system.

1.2 SCOPE

For this report, we focus our study on prominent cybersecurity research. To this end, we
evaluate the publications in top-tier security conferences, including IEEE Symposium on Secu-
rity and Privacy (Oakland), ACM Computer and Communications Security (CCS), Network and
Distributed Systems Security (NDSS), USENIX Security, Symposium on Research in Attacks, In-
trusions, and Defenses (RAID), and Annual Computer Security Applications Conference (ACSAC).
We have incorporated papers from other relevant conferences (including programming languages
and operating systems conferences) as necessary.

Since cybersecurity research progresses very rapidly, we focus our study on the past four
years, but include older publications if they constitute the state of the art in that area.

1

We identify the gaps in different components of a CDA system in Section 2, while excluding
the areas covered in our previous reports. Most notably, we exclude the gaps related to attack
detection and attack/vulnerability analysis as those have been covered in our “Attack Analysis”
report [22]. However, we include the important gaps related to vulnerability detection, especially
those closely related to a CDA system.

The rest of this report is organized as follows: Section 2 provides an overview of a CDA system
and the components involved in building such a system; Section 3 describes our methodology,
gap selection, and gap prioritization processes; Section 4 describes the state of the art for each
of the CDA components and the high-level gaps; Section 5 describes the overall summary and
prioritization of the gaps; and Section 6 concludes the report.

2

2. OVERVIEW OF A CYBER DEFENSE AUTOMATION SYSTEM

A cyber defense automation (CDA) system is a set of technologies and capabilities that
enable automated mitigation and remediation of vulnerabilities and active attacks on a network.
Capabilities consist of activities and processes that support an intelligent, agile use of cyber defense
information to form a self-healing, self-immunizing cyber system. The components of a CDA system
include attack/vulnerability detection, attack/vulnerability analysis, blocking, recovery, patching,
cleansing, and active response, as shown in Figure 1.

Attack/Vul.
Detection

Attack/Vul.
Analysis

Blocking

Recovery Patching Cleansing

Active
Response

A self-healing,

self-immunizing system

Figure 1. Components of a cyber defense automation system.

An automated cyber defense response begins with detection of an ongoing attack or an existing
vulnerability in the network. Speed and accuracy of detection is important in order to take action
to mitigate threats before they can do damage to network assets or disrupt missions. Examples of
detection capabilities include intrusion detection systems [32], machine-learning analytics that can
distinguish between suspicious and benign network activity, and automated fuzz testing techniques
that can discover previously unknown vulnerabilities in software [5]. In this report, we focus on
vulnerability detection, because attack detection was covered in our previous “Attack Analysis”
report [22].

The analysis component looks at the specific attributes of the attack or vulnerability to
reason about its behavior and impact in the context of the prevailing threat model. This enables
accurate, informed decisions that dictate mitigations appropriate to the nature of the attack and
the missions it affects. Examples include behavioral analysis of malware [24] and analyzing traffic
from bots to determine the C&C servers among them [11]. Please refer to our previous report,
“Attack Analysis” [22], for details and gaps pertaining to automated analysis techniques.

3

Having detected and analyzed an ongoing attack, the system should be able to take swift
action to block it while preserving a sufficient degree of service to minimize disruption to mission-
critical operations. Blocking activities include attempts to stop or reduce the impact of an ongoing
attack as well as the reachability of a vulnerability. In many cases, degraded service in the short
term is inevitable; a CDA system must, however, be able to prevent a complete shutdown of the
network. Activities in the blocking category include isolating affected hosts or ports from the
network, adding rules to a firewall to block traffic from known malicious domains, and techniques
for automated enforcement and adjustment of access control and other security policies [16,33].

Once an attack has been contained, the recovery component of the system should take steps to
roll back the network to its clean good pre-attack state, enabling the network to provide acceptable
although possibly degraded service. In addition, recovery can take proactive self-healing measures
to fix instances of bad state on the network, even if they happen inadvertently due to human error
or benign system failures. Examples of recovery activities include rolling back a virtual machine
(VM) to a previous snapshot, detecting and fixing bugs in access control logic [29], and using rescue
points to facilitate automated execution recovery in multitier architectures [37].

Another important part of a post-attack self-healing process is the patching of vulnerabilities
that made the attack possible. Patching can happen at two different timescales. At the machine
timescale, patches can be developed automatically to quickly fix the vulnerability. At this scale,
patches can be developed quickly, but they may be unreliable. Unreliability refers to possible
disruption of the system’s mission, failure to actually fix the vulnerability, and possibly introducing
new vulnerabilities into the system. At the human timescale, patches are developed by human
operators/developers to permanently fix a vulnerability. At this scale, patch development is slow
(often weeks/months), but it is more reliable than automated patch development. A complete
CDA system should incorporate both patching components for an effective remediation of attacks:
automated patches are developed to apply a quick fix to the vulnerability before better, more stable
patches are made available and applied by the vendors.

The detection, analysis, and patching of vulnerabilities need not wait for an attack to happen.
In fact, it is preferable for these capabilities to strengthen the network’s defenses proactively,
to prevent attacks from occurring in the first place. An automated solution requires ongoing
monitoring of the network’s systems and services against a continuously changing landscape of
security patches and software updates coming in from vendors, as well as the ability to automatically
deploy and test patches across the various host configurations and platforms that exist on the
network.

The self-healing of a network is not complete until it has been cleansed of any remaining traces
or foothold the attacker may have left behind. As part of an attack, malware can be injected into
various devices on the network and left dormant until cyber defense responses to the current attack
subside. Also, the attacker may have gained access to the network by learning credentials or other
sensitive information (e.g., through phishing). If credentials are left unchanged or the backdoors
are not removed from the compromised systems, the network remains open for the attacker to
launch a new attack at a later time. The challenge of developing an automated and thorough
cleansing system is being able to detect these hidden backdoors and to take sweeping prophylactic

4

action, such as organization-wide password changes, with minimal disruption to the network and
its missions.

Depending on the nature of the attack, it may also be desirable to launch active response
operations against the attacker, which include deception tactics and direct counter-offensive mea-
sures. A deception capability can divert the attacker’s attention away from sensitive areas of the
network, provide misinformation, and/or prevent the attacker from learning about the defense ca-
pabilities of the network. Counter-offensive measures go even further by actively inflicting damage
on the adversary’s systems and data to disempower the attacker at the source. Such active re-
sponse capabilities can require expensive additional overhead, so the benefits of deploying them in
a cyber defense automation solution must be carefully considered against the costs, in the context
of the network’s specific threat model. Examples include setting up honeypots to attract attackers
away from sensitive areas of the network [1], attacking vulnerabilities in exploit kits to render them
harmless [7], and sending poisoned feedback to botnets to reduce spam [31].

5

This page intentionally left blank.

3. METHODOLOGY

We have conducted a systematic review of the state of the art in the development of each of
the seven CDA areas, covering promising research that has been done within the last four years.
In the course of our review, we have identified a number of existing gaps that remain towards
achieving a CDA system that is truly self-healing and self-immunizing.

3.1 GAP DISCOVERY PROCESS

For the purposes of this study, we focus on the open literature and publicly known defensive
techniques. We reviewed papers and studies, mainly from the prominent security conferences such
as the IEEE Symposium on Security and Privacy (Oakland), Network and Distributed Systems
Security (NDSS), ACM Computers and Communications Security (CCS), USENIX Security Sym-
posium, Annual Computer Security Applications Conference (ACSAC), and the Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).

We initially surveyed the titles and abstracts for the past four years of each conference’s
proceedings. We then down-selected this very large list of papers based on their relevance to CDA.
We read the papers from this refined list and extracted any relevant gaps based upon our own
experience, the context of the paper, and the stated research contribution.

3.2 GAP SELECTION PROCESS

The gap selection process was performed during team meetings and began with individual
team members independently determining if a paper was worthy of carrying forward. After gaps
from each paper were identified, a majority vote was then used to determine whether to keep each
gap or not.

3.3 GAP TREATMENT AND CLASSIFICATION PROCESS

There are three major types of gaps in existing cyber defense:

• Technology Gap: an effective defense does not yet exist against a type of attack.

• Deployment Gap: defenses have been proposed or implemented against an attack type (open
source or commercial), but all of the existing defenses have impracticalities that impede their
adoption.

• Practice Gap: practical and effective defenses exist in the community, yet they are not adopted
widely, perhaps because of the lack of awareness or incentives.

In this report, we primarily focus on technology gaps. Note, however, that the distinction between
these areas is not well established and there are many gray areas. For example, knowing that an
existing defense against an attack has high overhead (deployment gap) points to the fact that a

7

faster defense must be developed against that attack type (technology gap). As another example,
a defense may only focus on a specific set of issues, making it not widely deployed (practice gap)
and at the same time, not completely effective (technology gap).

3.4 GAP PRIORITIZATION PROCESS

For gap prioritization, we take a two-step approach. First, to prioritize the CDA components,
we analyze their dependencies and assign higher priorities to the component upon which many other
components depend. This prioritization process is explained in greater detail in Section 5. Second,
to prioritize the gaps within each component, we used a subjective ranking system. Each team
member was assigned a CDA component, and as such, became an expert in that knowledge area.
Team members then identified the highest-priority gaps in their respective research area based on
the number of papers highlighting the gap, whether the gap has truly been solved, and whether
current technology exists that can solve the problem. We then combined these subjective rankings
to come up with an overall ranking for the gaps. Note that our priority ranking is a subjective
computation based on the qualitative ranking of our team members. Other researchers are likely
to compute different priorities based on their scoring of the gaps.

8

4. GAPS AND RESEARCH DIRECTIONS

4.1 GAPS IN VULNERABILITY DETECTION

4.1.1 High-Level Gaps

1. False positive rates are too high to be practical, especially for automated remediation tech-
niques after vulnerability discovery.

2. Vulnerability triaging is a highly manual task, as human-in-the-loop expertise is required for
assessing the threat posed by detected vulnerabilities and prioritizing them.

3. Vulnerability discovery techniques continue to grapple with the need for scalability and effi-
ciency to keep up with changes in complex, dynamic systems.

4. Vulnerability detection tools are a boon to the adversary, enabling them to more easily and
efficiently detect the presence of vulnerabilities.

4.1.2 Technique: CANVuS

Description of Technique

CANVuS [35] is a triggering event-driven solution to proactive network vulnerability scanning
that is guided by changes in network context, such as hosts joining the network, reconfigurations,
or changes to network services. Context-aware vulnerability detection approaches, such as the one
implemented by CANVuS, reduce resource overhead and detection latency compared to polling-
based models that indiscriminately launch periodic scans over the whole network.

Architecturally, CANVuS places network monitors in servers, routers, and switches across
the network that look for infrastructure, service, and packet-based events of interest. A context
manager aggregates the event data, translates it into a uniform model, and stores it in a network
state vulnerability database. CANVuS makes use of existing sources of data (e.g., syslog, SNMP,
and Netflow), while a flexible plug-in framework facilitates adding other data sources. The database
keeps track of the results of each scan completed for every host, storing information such as the
time the scan was triggered, a list of open ports, a list of vulnerabilities on each port, and the type
of triggering event.

Operationally, CANVuS begins by querying the network state vulnerability database for all
available hosts, which become the initial scanning candidates. A FIFO scheduling strategy is used
to minimize network overhead due to scanning. Callback functions containing database triggers
automatically append a new candidate to the scan queue whenever a relevant change happens to
that host. Triggering events are configured as policies in CANVuS, according to the discretion of
the network defender. Each host is also equipped with a timer that adds it to the scanning queue
if no changes have occurred since its last scan. The timer is also configurable by defenders. Nessus
is used for the actual scanning operations, modified to support this queuing design.

9

Technique-Specific Gaps

CANVuS suffers in several ways due to the difficulty of gaining local access to individual hosts
on the target network for host-based monitoring. Because many configuration changes occur at
the host level, they are not observable through network events. Due to this inability to perform
host-based monitoring, no real ground truth was available to evaluate CANVuS’s accuracy, and
thus, the true positive rate could not be analyzed. It is also for this reason that timeout-based
scanning is part of the CANVuS solution. Although the timeout period is customized to each host’s
network state, scanning history, and administrator policy decisions, it is a static parameter that
reduces the context-aware, event-driven properties of CANVuS. In fact, the use of timeout-based
scanning drove up the latency to such a degree (6 hours) that there was no significant improvement
over pure polling-based scanning (7 hours). This performance fails to achieve the stated context-
aware property where scans are triggered instantaneously in response to evidence of configuration
changes on the network. Unless some level of host information is monitored, the timeout-based
method cannot be completely replaced with the trigger-based approach. Thus, feasible solutions
for host-based monitoring need to be explored and developed. In the meantime, an automated
mechanism that dynamically adjusts the timeout period as each host’s scanning history evolves
may increase the effectiveness of the timeout-based system.

CANVuS is only as effective as the policies that specify when events are triggered, which
CANVuS leaves for the defender to manually define. The highly dynamic nature of many networks
(e.g., those where the use of mobile devices is widespread) and the adaptability of the adversary to
utilize novel avenues of attack may necessitate at least some automation to support frequent, dy-
namic updates to the policies. Also, the need remains for risk and threat assessment methodologies
that will guide the defender in coming up with comprehensive and effective policies that capture
the potential vulnerabilities on the network and the current threat landscape, while minimizing
disruption to missions. While the CANVuS methodology includes a study of temporal correlations
between triggering events and observed network configuration changes to help determine effective
triggering policies, it focuses on permanent changes, each of which is defined as being the only
change on a given host within a 16-day period. Not only does this eliminate 95% of hosts, resulting
in a lack of statistical significance in results, but this definition of permanence is arbitrary. As
such, other definitions of permanence need to be explored. Further, ephemeral changes can be very
relevant to vulnerability scanning and risk assessment, and should be included in future analyses
pertaining to the definition of triggering events.

4.1.3 Technique: ReDeBug

Description of Technique

ReDeBug [12] addresses the problem of code cloning that is especially prevalent in open-
source software. When code is cloned, any vulnerabilities it contains are cloned as well. When a
patch is released for a vulnerability, all of the relevant code clones need to be patched, not only
the original code that led to the development of the patch. Given that there are millions of files

10

that need to be checked, a solution must be efficient and scalable, both in terms of memory and
speed. Although much prior work has been done in this area, it has relied on language parsing,
which tends to be slow, cumbersome, and incomplete. ReDeBug is a novel approach that focuses
on maximizing efficiency through the use of Bloom filters and feature hashing.

ReDeBug has two use cases: detecting unpatched code clones in a given file and evaluating
the amount of code cloning that is shared by two files (i.e., the similarity between them). In
both applications, ReDeBug first normalizes each code file by removing redundant whitespace and
converting all characters to lowercase. Next, the normalized file is tokenized using an n-length
window. These n-tokens are then hashed into a Bloom filter for that file.

In the code clone detection use case, given a unified diff software patch, ReDeBug performs
a Bloom filter set membership test to detect whether a code file contains the vulnerability that is
fixed by the patch. In the second use case, to determine the amount of code cloning in common
between two files, a similarity metric based on feature hashing is used to calculate the percentage
of tokens in common between the two files. In both use cases, ReDeBug finishes with an exact
match test on the identified unpatched code clones to remove Bloom filter errors.

Technique-Specific Gaps

One of the goals of ReDeBug was to provide a solution that can find a competitive number
of code clones without requiring the use of clusters, which are expensive and not readily available
to most developers. However, with a complexity of O(N2), where N is the number of files (or the
number of functions if using function-level granularity), the code similarity detection algorithm is
neither scalable nor efficient and still requires a cluster to feasibly run. More efficient solutions to
the similarity detection problem remain in need of development.

Some patches do not directly modify the vulnerable code; they insert a check before or after
the vulnerable code. Such a patch will not be detected by the Bloom filter, and this leads to false
positives. The impact of erroneously patching a code clone that has already been fixed needs to
be explored, especially for potentially mission-critical applications. Mechanisms for detecting such
patches need to be developed.

A security implication of ReDeBug is that an attacker can find it very useful for malicious pur-
poses. With a single laptop, an attacker can use ReDeBug to quickly find thousands of vulnerable
applications among millions of files and billions of lines of open-source code. To stay ahead of the
adversary within the sheer scale of the number of unpatched code clones that exist in open-source
code bases (e.g., 15,546 unpatched code clones found in Debian and Ubuntu Linux operating system
distributions), a solution that automates the fixing of these unpatched code clones is needed.

11

4.1.4 Technique: Detecting Vulnerable Websites (DVW)

Description of Technique

The technique of Detecting Vulnerable Websites (DVW) [30] aims to address the growing
problem of webserver malware, which exploits vulnerabilities in outdated or unpatched versions of
popular content management systems (CMS), such as Wordpress and Drupal. The attacker injects
malicious code into a host running a web server to get it to participate in search-engine poisoning
or redirection campaigns that may promote questionable services (e.g., counterfeits) or act as a
delivery server for malware.

Prior work in detecting such threats has focused on reactive solutions that can automatically
determine the maliciousness of a given website. The DVW technique takes a proactive approach
that predicts future compromise by looking for legitimate websites that are vulnerable before they
become malicious.

DVW takes a machine-learning approach by building decision tree models using a variety of
features characterizing a website’s traffic patterns, popularity rankings, file system structure, and
non-user-generated webpage content. These features are prioritized by statistics that measure the
impact of each feature on the website’s chances of becoming compromised, and the top N features
are submitted to the classification process. A dynamic feature extraction process periodically re-
computes this set of top N features using a windowing and weighting strategy. Such dynamism is
essential in order to capture the constantly evolving nature of this domain, as new CMS versions
come out and old ones fall out of use.

Technique-Specific Gaps

Demonstrating a 66% true positive rate and a 17% false positive rate, DVW’s best-performing
classifier is not yet practical. Reliance on non-user-generated content and traffic features as the
only indicators of a malicious website may be insufficient. In addition, DVW depends on black-
listed websites as ground truth for its training process and is therefore limited to the accuracy of
the blacklists themselves. More research is needed to explore additional feature sets, alternative
feature-selection statistics and sources of ground truth, as well as other windowing and weighting
configurations, to improve DVW’s classification performance.

The dynamic feature extraction system also has several limitations that demand more re-
search. First, redundant features reduce the diversity and usefulness of the feature set. As such,
correlation of top features to remove redundancy is suggested for future work. Second, there are
scalability concerns that come with DVW’s best-performing classification strategy, which takes into
account all the past useful features along with the current top N features. Because the size of the
feature set will therefore be monotonically increasing, training and running DVW will take longer
over time. Further investigation is needed into methods that can achieve effective classification
while keeping the size of the feature set relatively constant over time. A third limitation is that the
adversary can poison the performance of the feature extraction system by adjusting the content

12

on websites over which they have control. For example, if these websites have distinguishing tags,
the adversary may remove them or rewrite them in semantically equivalent ways to prevent DVW
from finding them useful for classification. The impact of this potential new threat deserves further
analysis.

There are also concerns surrounding the use of a dictionary structure for training, which
stores a list of all tags from all sites, mapping each one to a count of benign and malicious sites
in which it has appeared. Unsurprisingly, this dictionary grows extremely quickly; for scalability,
DVW adopted the heuristic of periodically purging all tags that had appeared only once during
a given window (e.g., every 5000 sites added). This removed approximately 85% of the content
from the dictionary every time it was run. The use of this particular heuristic poses potential
problems due to the loss of valuable information, reducing DVW’s ability to capture small changes
in features over time and resulting in an increasing number of false positives. This also makes
DVW vulnerable to adversarial poisoning of features. The actual impact of this heuristic needs
further investigation. A consideration of alternate heuristics that may offer better trade-offs is also
recommended. Also, the use of persistent storage (e.g., database) compression methods, as well as
more memory-efficient representations for storing the tag-count mappings, remain to be explored,
which may eliminate the need for such trade-offs entirely.

4.1.5 Technique: MAYHEM

Description of Technique

Mayhem [6] is a technique that attempts to automatically find and generate exploits for
vulnerabilities in binaries. Mayhem relies on a hybrid combination of concrete and symbolic
execution to find the vulnerabilities in a program. Given a program and an input description that
specifies potential symbolic sources, Mayhem runs two processes: a concrete executor client (CEC),
which concretely executes code on the CPU, and a symbolic executor server (SES), which can run
on any platform. Mayhem is also more interested in attacker-controlled inputs (i.e., input sources
that an attacker can manipulate).

When Mayhem loads a vulnerable program, it instruments the program and performs dy-
namic taint analysis while executing the program concretely. When execution reaches a branch or
jump target that is tainted, Mayhem suspends the CEC engine’s process and then sends the branch
information to the SES engine for symbolic execution. The SES determines which branches are
feasible and later sends the CEC the next feasible branch target to concretely execute. Note that
during symbolic execution, SES forks a new execution each time the SES encounters a branch. SES
maintains a path constraint for each forked execution. Forking executions lead to the path explo-
sion problem that all symbolic execution engines encounter, and this problem leads to the draining
of system resources. To mitigate the path explosion problem, Mayhem suspends the execution of
some forked executions until system resources become available for them to run. Mayhem also
performs several other optimizations that allow it to analyze program binaries.

To automatically generate an exploit, Mayhem generates an exploitability formula when it
detects a tainted branch. Mayhem queries a Satisfiability Modulo Theories (SMT) solver to deter-

13

mine whether the formula is satisfiable. If it is, then an exploit has been found. Mayhem’s exploit
generation technique is sound, but incomplete. It is sound because when Mayhem determines that
a bug is exploitable it generates a triggering input, but it is incomplete because it is not able to
find all exploitable bugs.

Technique-Specific Gaps

Although Mayhem is effective at automatically finding and generating exploits, it has a num-
ber of gaps. First, Mayhem can only generate exploits for some control flow hijack vulnerabilities.
Application of techniques like Mayhem to other types of vulnerabilities remains an open research
problem. Second, Mayhem cannot find all the vulnerabilities in binaries. This is because of the
limitations inherent in symbolic execution. Third, Mayhem suffers from the path explosion prob-
lem experienced by all symbolic execution techniques, which makes it impractical for large code
bases. Fourth, it requires significant manual effort to model the system and library calls. Fifth,
Mayhem cannot handle multi-threaded programs. Further research is needed to address these gaps
and tackle the scalability and manual overhead problems that have impeded the application of such
techniques in production environments.

4.2 GAPS IN ATTACK/VULNERABILITY ANALYSIS

The attack and vulnerability analysis areas are covered in great depth in our “Attack Analysis”
report [22]. For the sake of brevity, we do not repeat them here. Interested readers are encouraged
to refer to that report for more information.

4.3 GAPS IN BLOCKING

4.3.1 High-Level Gaps

1. Automated blocking actions are unscalable, e.g., with symbolic execution/code analysis.

2. Blocking systems are still not fully automated, thereby requiring heavy manual effort.

3. Blocking techniques are still bypassable:

• High-level policies (e.g., blocking capabilities) are easier to bypass.

• Low-level policies (e.g., memory-instrumentation) are unscalable.

4. Blocking can be made ineffective depending on the system, i.e., they are limited by mission
impact:

• Dynamism of system/connectivity often reduces the impact of blocking.

• Mission impact may limit blocking options.

• Expressiveness of systems can make blocking ineffective.

14

5. Existing blocking techniques are overspecialized (very narrow in their applicability).

4.3.2 Technique: MetaSymploit

Description of Technique

Attack frameworks are tools that allow adversaries a method to rapidly create, configure, and
deploy attack scripts. With attack frameworks, new attack scripts can be generated as soon as
an exploitable vulnerability is discovered. This poses a challenge to administrators who are tasked
with securing networks as they cannot generate or deploy mitigations at the same speed that attack
scripts are generated [32].

MetaSymploit is a system designed to combat these zero-day vulnerabilities. In order to do
this, MetaSymploit first symbolically executes an attack script. From the symbolic execution, the
attack behavior and payloads are captured. Patterns and contexts are extracted from the attack
script payload and behavior, respectively. From this, an IDS signature is created to block the attack
script [32].

Technique-Specific Gaps

Though MetaSymploit sets out to achieve a lofty goal, it is overly specialized in its current
implementation. As of now, it works for attack scripts generated from the attack framework
MetaSploit, focuses on 10 specific attack script patterns, and is only valid for attack scripts written
in current and past versions of Ruby. In addition, as each Intrusion Detection Sysytem (IDS)
signature is specific to each script, multiple versions of the same attack script will generate multiple
signatures, thereby slowing down machine speed. Lastly, manual analysis is required when the
attack script uses obfuscation techniques, complex symbolic loops, etc., or when multiple paths of
an attack script lead to the same payload [32].

4.3.3 Technique: DEMACRO

Description of Technique

To deliver more enriched content to websites, platforms such as Adobe Flash and Microsoft
Silverlight often utilize cross-domain requests. Cross-domain requests rely on configuration policies
that state whether an applet is allowed to fetch content from a website’s server. If a website’s server
has an insecure configuration policy, such as using wildcards, attackers can execute cross-domain
attacks, e.g., leaking sensitive information or hijacking sessions [16].

DEMACRO aims to defend against these malicious cross-domain requests. It does so by first
observing all requests created in a user’s browser. If the request is caused by a plug-in applet (i.e.,
Adobe Flash) and is cross-domain, two tests are conducted to determine if the request is insecure:
(1) does the website’s configuration policy have insecure wildcards and (2) does the applet expose

15

proxy functionality. If either of these conditions is met, authentication information is removed from
the request (i.e., from session cookies and authentication headers) and the request is allowed to
complete. This ensures that such authentication information cannot be stolen by a cross-domain
attack [16].

Technique-Specific Gaps

Similar to other techniques designed to combat malicious cross-domain requests, DEMACRO
is an overspecialized tool. It only focuses on Adobe Flash plug-in-based applets. In addition,
DEMACRO only detects two types of misuse cases: insecure policies and insecure proxies. Recent
reports estimate that only 11% of websites contain wildcard policies. Furthermore, during the
DEMACRO evaluation phase, only 0.88% of all requests were deemed insecure. This suggests
that DEMACRO is solving a small, unique problem that does not affect many websites. Lastly,
DEMACRO removes authentication information contained in session cookies and headers. If private
data is contained in other locations, it can still be leaked [16].

4.3.4 Technique: IceShield

Description of Technique

JavaScript, while allowing greater versatility and flexibility with respect to website design,
allows adversaries to initiate a variety of web-based attacks, such as drive-by download and click-
jacking attacks. Past mitigations to web-based attacks often introduce significant overhead or are
not compatible with the current infrastructure [8].

IceShield distinguishes itself from past mitigation approaches by performing the analysis
directly in the browser, thereby reducing overhead, and by being independent of the browser type.
IceShield performs a dynamic analysis of websites and mitigates attacks by destroying the ex-
ploit’s payload. It begins by overwriting and wrapping the JavaScript methods. Next, the called
function and its parameters are inspected. The method is then compared to a threshold to de-
termine whether it qualifies as malicious. The threshold is derived from machine learning (latent
Dirichlet analysis), where a set of eight heuristics is used to distinguish benign and malicious web-
sites. If the method qualifies as benign, the method is called with its original parameters, i.e.,
everything remains unchanged. If the method qualifies as malicious, the method is blocked or the
set of arguments is modified [8].

Technique-Specific Gaps

IceShield is a tool built for a very specific purpose. It was designed to combat drive-
by download attacks that match a specific set of heuristics, use native methods to prepare data
structures, and deploy an exploit without redirecting or creating a new window context. In addition,
IceShield cannot detect timing attacks, ActiveX attacks, or items that do not use Document

16

Object Model (DOM) methods to create attributes, e.g., malicious PDFs or Java applets. Lastly,
IceShield was evaluated against exploits created using a popular exploit kit. If an attacker crafts
an attack that does not use an exploit kit or utilizes any sort of obfuscation technique, IceShield
will not be able to detect the attack [8].

IceShield relies on the use of machine learning to determine its threshold. As such, it suffers
from other issues associated with machine-learning approaches [22]: (1) it is only as good as the
data it is trained on; (2) false positives require human analysis; and (3) features indicative of a
malicious website may not necessitate maliciousness, e.g., a large header size may be identified
by machine learning as malicious, even though a large header size can be caused by other benign
reasons [8].

4.3.5 Technique: DeepDroid

Description of Technique

Many employees in modern enterprises use mobile devices to conduct business. As such, it
is important for these devices to be managed and protected. Device administrators often want to
restrict the use of specific applications while employees are at work, e.g., do not allow the use of
microphones. At the same time, many applications only allow the user to choose from allowing all
application permissions or not running the application at all [33].

DeepDroid was designed for corporate device administrators to have more control over mo-
bile device applications via an enterprise security policy. With original equipment manufacturer
(OEM) support, DeepDroid is installed on mobile devices with root privilege. The device is then
authenticated to the enterprise policy center via a secret key. The enterprise policy center then
distributes policy rules to the device. The device receives the policy and authorizes access privileges
to individual applications. DeepDroid is a blocking technique because a new policy can be loaded
on the devices based on attack/vulnerability detection events, quickly blocking their impact [33].

Technique-Specific Gaps

Though DeepDroid was designed for users of corporate mobile devices who may use their
device for personal use, it cannot handle typical use cases. For example, if a user decides to install
many applications, DeepDroid would require the creation of individual policies for each application
describing what resources the application can access. In addition, DeepDroid cannot enforce policies
on high-data-volume media-related resources such as the camera. With respect to policy creation,
it is unclear where the responsibility lies. No matter the case, creation of individual policies for each
application that a mobile device user decides to install requires significant manual effort. Lastly,
there is always the chance that the mobile device user may deactivate the technology if it negatively
impacts user experience, which is quite possible given that it causes performance overhead between
2 and 10%. All of these issues combined indicate that DeepDroid is not scalable [33].

17

4.3.6 Technique: JAMScript

Description of Technique

JAMScript is a program transformation technique that weaves a security policy into a JavaScript
program so that the program is guaranteed to be safe with respect to the policy. The intuition
behind the technique is that static analysis alone cannot prove that a program adheres to a given
security policy, and runtime monitoring via inlined reference monitors may result in degraded per-
formance and may be unsound. JAMScript attempts to overcome these limitations by using a
hybrid technique that relies on transactional introspection, which both allows the effects of exe-
cutions to be known a priori so that corrective measures can be taken, and allows transactional
introspection of dynamically generated code [13].

Given a security policy, JAMScript first identifies statements in the program that may cause
policy transitions. The information is used to rewrite the statements, which results in a transformed
program, i.e., the transformed program has the security policy woven into it. The technique pre-
vents the violation of the policy during program execution. For dynamically generated code, the
technique uses statement redirection to determine whether the code violates the policy. During
the execution of the program, if it appears that the policy is going to be violated, the technique
suppresses the execution [13].

Technique-Specific Gaps

Although JAMScript is successful in preventing policy violations, it has a number of gaps.
It requires manual policy specification, which can be prone to error and incomplete. Also, the
overhead incurred because of the instrumentation in the programs can be large. Moreover, the
policy should evolve concurrently as the program evolves, potentially making maintenance of the
program more expensive [13].

4.4 GAPS IN RECOVERY

4.4.1 High-Level Gaps

1. True recovery techniques are rare, e.g.:

• Rolling back to a previous state is not true recovery as it may cause information loss.

• Many techniques falsely refer to blocking or cleansing as recovery.

2. Rolling back a system is an imperfect method, e.g.:

• System functionality may break (reliability problem).

• System may roll back to a long time before the attack or even after the attack (accuracy
problem).

18

• In distributed systems or systems with many dependencies, rolling back is difficult.

• Rolling back incurs large overhead.

3. Automated testing of recovery effectiveness and side effects is still a challenge.

4. Many techniques shift manual effort from one area to another, i.e., instead of manually re-
covering the system, the defender must manually develop recovery rules and templates that
will be used to automatically recover the system.

4.4.2 Technique: Airmid

Description of Technique

Large-scale attacks on mobile devices have yet to occur, as applications (apps) are often
manually removed from the app marketplace soon after malware is discovered. This method of
manually removing apps will not suffice as the number of applications exponentially increases. As
such, a more automated solution for finding malicious apps is needed [20].

Airmid aims to automatically identify and respond to malicious mobile applications based on
network traffic. It does so by first identifying suspicious network traffic through the use of sensors,
e.g., domain name service (DNS) blacklists. A centralized server then relays a secure message to
the mobile device. Software on the mobile device inspects the kernel to identify which process is
responsible for the suspicious traffic. Once the process is identified, the device initiates a remedia-
tion action, i.e., process termination, traffic filtering, application updating, mobile device updating,
file removal, or factory reset [20].

Technique-Specific Gaps

Airmid focuses on the detection of malicious network activity, thereby ignoring malicious de-
vice activity. Airmid also requires network connectivity and only examines the activity of transmis-
sion control protocol (TCP) connections, not user datagram protocol (UDP) connections. During
the evaluation phase, Airmid was able to detect and remedy only three kinds of malicious activity:
leaking of private data, dialing of premium numbers, and participating in botnet activity. These
three issues indicate that Airmid is a problem-specific technique. In addition to being problem spe-
cific, Airmid relies on already-established detection techniques that rely on network sensor data,
e.g., DNS blacklists. As such, Airmid is only as good as its detection technique, i.e., if DNS black-
lists do not contain a particular attack type, then Airmid cannot detect or remediate attacks of
that type. Lastly, if Airmid initiates a factory reset of the mobile device in response to an attack,
all user data may be lost, thereby resulting in an irreversible and, in the case of a false positive, an
unnecessary action [20].

19

4.4.3 Technique: FixMeUp

Description of Technique

With any web application, it is important to have proper access control and ensure that only
authorized users have access to sensitive operations or data. Most access-control policies are written
from scratch, as there is no general framework for writing policies. As such, developers sometimes
unknowingly insert inaccurate access-control policies or fail to identify methods in which access
control can be bypassed [29].

FixMeUp is a tool that identifies and repairs access-control issues for web applications. It
begins by receiving an access-control policy regarding sensitive operations, e.g., database queries or
file deletions, and then turns this policy into a template. The template is then compared to every
instance in which a sensitive operation is called to verify that the access-control logic matches the
template. Repairs are generated when the logic does not match the template or when some of the
logic is missing. After ensuring that the new logic and the template match, the transformed code
is sent to the web application developer for actual implementation [29].

Technique-Specific Gaps

FixMeUp relies on being fed an accurate access-control policy, which requires significant
developer effort in combination with policy inference tools. Even if a developer perfectly specifies
the access-control policy, FixMeUp cannot handle specific language features, e.g., dynamic class
loading or external side effects. In addition, FixMeUp corrects access-control issues as specified
in the template, with no exceptions. This can lead to unwanted changes in the program if (1)
the template issues access control incorrectly; (2) the template only indicates one check for access-
control, yet multiple checks meet the objective; or (3) the template requires an unwanted control
or data dependency to be introduced [29].

4.4.4 Technique: Cascading Rescue Points (CRPs)

Description of Technique

Despite developers’ best efforts, software is not error free. When an error occurs, a popular
solution is to terminate the program. In an effort to implement less drastic techniques, software
self-healing based on rescue points (RPs) has been proposed. The premise behind the idea is
that software already contains code for handling errors and this same code can be used to handle
unexpected errors [37].

RPs are functions that contain error-handling code. Cascading rescue points (CRPs) build
on rescue points by applying the concept to multitier architectures. More specifically, as a thread
enters a RP function, code is inserted that switches the thread into checkpointing mode. In check-
pointing mode, the CPU state is saved and memory contents are logged. CRPs add an additional

20

layer by notifying remote peers of this status change so they can begin their own checkpointing. If
a thread in an RP function receives an error signal, the recovery process begins as memory contents
are restored. In addition, remote peers also begin the recovery process [37].

Technique-Specific Gaps

CRPs are not a scalable solution for two reasons: (1) CRPs cannot handle multiple errors
received in a short time, and (2) implementing CRPs requires that all applications have the ability to
checkpoint and recover. CRPs are a problem-specific solution as they can only be implemented for
applications that communicate through TCP connections. In addition, CRPs only work for
architectures with an innate hierarchy; there is no guarantee that a globally consistent state will be
maintained across processes. Lastly, the current implementation of CRPs is not yet fully practical
due to overheads upwards of 70%, even when not checkpointing or recovering, and because of the
potential for false positives that leads to memory corruption as erroneous information is restored

[37].

4.5 GAPS IN PATCHING

4.5.1 High-Level Gaps

1. Automatically finding the location of the error in the buggy application (fault localization)
is unscalable.

2. Effective analyses (static or dynamic) to determine the effects of patches on the functionality
of the application (impact analysis) are lacking.

3. Regression test suites for automatically generated patches are often inadequate:

• Patches may not fix vulnerabilities.

• Patches may introduce new vulnerabilities.

4. Automated test generation (symbolic, random, or search-based) is difficult [23].

5. Automatic determination of whether a given application passes or fails a test case (i.e., oracle
problem) is difficult.

4.5.2 Technique: PatchDroid

Description of Technique

Android is the most popular mobile device platform, and as such, it is important for patches to
be quickly distributed. Devices sold directly by Google receive over-the-air updates. Other devices
rely on their manufacturer to deliver updates, which may or may not be timely. In addition, most

21

devices only receive updates from their manufacturers for the first 1–2 years of use; after this point,
devices are no longer updated, leaving them prone to security vulnerabilities.

PatchDroid [17] was designed to distribute and apply patches to these legacy Android devices
through the use of a dynamic, in-memory patching process. PatchDroid is a system that runs in
the background on Android devices. It monitors all Android processes to determine whether they
are in need of a patch by comparing them with a list of known patched vulnerabilities. Once a
process in need of a patch is identified, the patch is injected. Patch injection occurs if, and only if,
the patch is known to be reliable, i.e., does not cause the device to crash. Lastly, PatchDroid also
monitors the mobile device for attacks on already patched processes.

Technique-Specific Gaps

PatchDroid relies on both on-device and cloud components. The on-device component is
responsible for process monitoring and patch injection, among other things, while the cloud com-
ponent contains the patch library. The connection between the on-device and cloud components
is not encrypted, thereby allowing an adversary an avenue for attack. In comparison to patches
Google or device manufacturers distribute, PatchDroid relies on independent security analysts to
write patches. Though the patches are tested to ensure that they do not cause the device to crash,
they may still cause unintended effects, such as data corruption. Lastly, PatchDroid is an over-
specialized technique with limited coverage. More specifically, PatchDroid is a system designed for
privilege escalation vulnerabilities and user space, e.g., within user application, vulnerabilities. It
only patches vulnerabilities in native binaries and Java software. If a vulnerability exists outside
of this space, e.g., in manufacturer-specific portions of the operating system, PatchDroid cannot
manage it.

4.5.3 Technique: Kali

Description of Technique

Kali [26] is a patching technique that was developed to address some of the limitations and
evaluation issues of techniques that use genetic programming to find patches for buggy applica-
tions. To patch a buggy application, Kali applies a fault-localization algorithm to find the potential
location of the error. The fault-localization algorithm uses the set of passing and failing executions
and a score function to generate a ranked list of statements. For each statement, Kali searches
the space of patches to find a patch that fixes that error. The patch search space of Kali consists
of redirecting branches, inserting return statements, and removing statements. The authors show
that using these types of patches performed better than the techniques that employ evolutionary
algorithms, such as GenProg [34].

22

Technique-Specific Gaps

Although Kali performed better than other evolutionary algorithms, gaps still remain. First,
Kali relies on three types of patches and therefore it cannot fix complex errors. Second, Kali does
not perform any impact analysis to determine the effects of its fixes. For example, it is possible that
the vulnerability still remains in the software despite the patch, or new vulnerabilities are introduced
because of the patch. Third, Kali relies on the efficacy of the fault-localization algorithm to be
successful, and as such, a bad algorithm may prevent Kali from producing good patches or any
patches at all. Finally, without a specification, it is impossible to determine whether the patch
actually fixes the error in an application.

4.5.4 Technique: SemFix

Description of Technique

SemFix [21] is an automated patching technique based on symbolic execution, constraint
solving, and program synthesis. To fix a software bug, SemFix relies on three existing techniques
to generate a patch. The first technique is fault localization, which attempts to find the location of
the fault in the software. The second technique is specification inference, which attempts to find
the correct specification of the buggy statement. The third technique is program synthesis, which
attempts to synthesize an expression that conforms to the specification discovered by the second
technique.

Given a program and at least one failing test case, SemFix works by using statistical fault
localization to generate a list of candidate program statements that may be buggy. The statistical
fault-localization technique ranks the program statements from most suspicious to least suspicious.
For each of the suspicious statements, SemFix generates a repair constraint using concolic execution
(i.e., concrete and symbolic execution), which is then solved using a technique called component-
based program synthesis. In component-based program synthesis, a function that satisfies a set of
input-output pairs is synthesized from basic components. Components can be addition, subtrac-
tion, and constants.

Technique-Specific Gaps

There are a number of significant gaps that exist within SemFix. The first gap is that the
technique only repairs buggy statements that are assignment (x = fbuggy(· · ·)) or conditional state-
ments (if(fbuggy(· · ·))). Also, the technique cannot produce patches for bugs that span multiple
statements. The second gap is that the technique can be inefficient given the large state space of
functions that has to be searched to find a solution to a repair constraint. The third gap is that the
patch generated by SemFix cannot be generalized to other test cases. This is because the repair
constraint is generated based on the program’s regression test suite. Any new test cases that are
constructed for the program can render the patch invalid because the new test cases can invalidate

23

the repair constraint. This gap is particularly severe because when a new patch is constructed
for a given software, the new patch will introduce new program paths or data dependences in the
program. The paths or data dependences must be tested, e.g., by developing new test cases. The
fourth gap is that the technique is not able to generate patches for programs with large regression
test suites. This is because large regression test suites generate large constraints, which become
difficult to satisfy. The fifth gap is that the technique performs no impact analysis to determine
the impact of the patch on the functionality of the program. Finally, the last gap is that the
inaccuracies of the statistical fault-localization process may be misleading, causing the technique
to spend large amounts of time fixing non-buggy statements.

4.5.5 Technique: AppSealer

Description of Technique

AppSealer [38] detects and automatically patches Android applications that are vulnerable
to component hijacking. Component hijacking is where a malicious application that does not have
privileges is able to use a vulnerable application that does have the desired privilege in order to
retrieve or store sensitive data. They use static data flow analysis (backwards and forwards) to
determine vulnerable code in apps that leaks sensitive information or stores user input in sensitive
places. They insert instructions into the intermediate representation (IR) to track taint propagation
at runtime as well as guard instructions at sinks in order to prevent dangerous data flow. The run-
time taint tracking is used to eliminate false positives identified during the static data flow analysis.

Technique-Specific Gaps

AppSealer has a number of gaps. First, AppSealer patches only one class of vulnerabilities.
Second, AppSealer does not perform any kind of impact analysis to determine the impact of the
patch on the functionality of the application. Third, the technique suffers from false positives and
false negatives, as determined by taint tracking. Fourth, AppSealer cannot perfectly translate from
bytecode to IR, which can have a negative effect on its effectiveness. Finally, there is no guarantee
that the patch that is generated is human-readable, impeding future software maintenance.

4.5.6 Technique: Code Phage (CP)

Description of Technique

Code Phage (CP) [28] patches vulnerabilities in stripped x86 applications by transferring
checks from donor applications into the buggy recipient applications, thereby eliminating the error
in the buggy applications. The intuition behind CP is that a donor application implements a check
that handles the error-triggering input.

Given a benign input and an error-triggering input, CP searches a database of applications
(i.e., donor applications) that correctly process the inputs. CP selects a donor application, instru-

24

ments the application, and then runs the application on the inputs. At each branch condition that
is influenced by the relevant input that triggers the error, CP records the direction taken by the
branch and a symbolic expression for the branch. CP records the direction taken by the branch
because it assumes that the benign and error-triggering input take different directions. Any of the
branches where the benign and error-triggering input take different directions becomes a candidate
check to be transferred to the recipient application. CP performs fault localization on the recipient
application to determine where to insert the check. After the check is inserted, CP performs patch
validation. During patch validation, CP ensures that the modified recipient application compiles
correctly and passes all the regression test cases for the original recipient application.

Technique-Specific Gaps

Although CP was successful in patching a number of applications, it still has significant gaps.
The first gap is that CP can only address three classes of errors: out-of-bounds access, integer
overflow, and divide-by-zero errors. The second gap is related to the first in that CP can only
address bugs that can be fixed with conditional checks. For example, divide-by-zero errors can
be handled by checks that ensure that the divisor is not zero. In general, not all bugs can be
fixed with conditional checks (e.g., race conditions). The third gap is that CP assumes that the
error-triggering and benign input do not take the same path in the program. This assumption is
not valid because there are bugs where the benign and error-triggering inputs take the same path
on some inputs. The fourth gap is that CP assumes that there is a donor application that correctly
handles the benign and error-trigger inputs, but that may not always be true. The fifth gap is that
all of the checks end with an exit(-1) statement. This design may not always be desirable because
exiting from the application is essentially a form of denial-of-service action. Finally, the sixth gap
is that for every input that triggers a failure in the recipient application, CP will transfer a check
from a donor into the recipient. In practice, this may lead to an application with code that is
difficult to understand or maintain.

4.5.7 Technique: ClearView

Description of Technique

ClearView [25] is a technique for automatically patching stripped Windows x86 binaries.
ClearView is designed to target heap-buffer-overflow and illegal-control-flow-transfer vulnerabili-
ties. ClearView has five components that work together to generate a patch for a given binary.
The first component is a learning component, which ClearView uses to perform dynamic invariant
detection or specification mining. ClearView gathers invariants during the normal execution of the
binary. Invariants are logical formulas whose values may be of registers or memory locations. After
ClearView learns the invariants, it inserts monitors into the binary to detect heap-buffer-overflow
and illegal-control-flow-transfer failures. When a failure is detected, ClearView attempts to find
the invariant that is correlated with the failure. These correlated invariants are always satisfied
during normal executions, but not in failing executions. ClearView uses the correlated invariants

25

to generate a patch. The goal of the patch is to ensure that the invariant is not violated when
execution reaches that program point. ClearView ensures that changing the flow of control, val-
ues of registers, and/or memory locations does not violate the invariant. It generates a number of
patches, each of which is evaluated and the most effective patch is selected and applied to the binary.

Technique-Specific Gaps

Although ClearView was successful in generating patches for heap-buffer-overflow and illegal-
control-flow-transfer vulnerabilities, it still has a number of gaps. First, ClearView targets only
two classes of vulnerabilities, which limits its applicability to other classes of vulnerabilities or
bugs that affect program functionality. Second, forcibly changing the control flow of a program,
memory locations, or register values may have unintended consequences. ClearView has no way
of identifying these unintended consequences because it does not perform impact analysis. Third,
ClearView may not be applicable to large programs because it has a large learning overhead, which
is due to the large number of invariants that it learns. Fourth, ClearView comes with a predefined
set of invariants that it tracks. If an invariant needed to generate a patch for a vulnerability is not
present, ClearView will not be able to fix that vulnerability. Fifth, ClearView assumes that the
failure (observable error) occurs where the error in located in the binary. In general, the failure
may occur far away from where the error is, thus preventing ClearView from generating a patch.

4.5.8 Technique: PAR

Description of Technique

Par [15] is a technique that was developed to address the situation wherein automatic patch
generation techniques produce nonsensical patches. Patch generation overcomes the production of
bad patches by learning fix patterns from human-written patches. Par then uses the learned fix
patterns to automatically generate patches. The authors studied 62,656 human-written patches
of open-source projects and found that there are several common fix patterns. An example of a
common fix pattern is “changing a branch condition.” The authors created 10 fix templates Par
uses to generate patches.

To generate a patch for a buggy program, Par uses an evolutionary-based approach. Par
first generates an initial population of program variants. Then, it modifies the initial program vari-
ants using the fix templates. Par then uses a fitness function to select the top program variants.
The fitness function measures the number of regression test cases that a program variant passes.
These top program variants become candidates for the next iteration of Par’s evolutionary process.
The process continues until a program variant is found that passes all the regression test cases. For
any given program variant, Par does the following source code analysis: (1) Par finds the location
of the buggy statement in the program using statistical fault localization; (2) for a given buggy
statement, Par analyzes the statement and its surroundings in the program’s abstract syntax tree
(AST) to determine which fix template to use to generate a patch; and (3) Par rewrites the AST

26

based on the template.

Technique-Specific Gaps

Despite the success of Par in producing more human-readable patches, there are still signifi-
cant gaps in the technique. First, inaccurate fault-localization results may lead the technique to be
inefficient because it will spend time modifying non-buggy statements. Second, the technique does
not perform any impact analysis to determine the impact of the patch on the functionality of the
program. Third, new test cases need to be developed to test the impacted parts of the software.
These new test cases also need to be classified as passing or failing test cases. Fourth, the technique
relies on 10 fix patterns, limiting the types of bugs it can fix. Also, the technique cannot fix bugs
that span multiple statements.

4.5.9 Technique: GenProg

Description of Technique

GenProg [34] is a technique that uses evolutionary algorithms to generate patches for buggy
software. The key intuition behind GenProg is that a program that is missing a given functionality
can recover that functionality in some other part of the same program. Given a buggy program
and a failing test case, GenProg computes the abstract syntax tree (AST) of the program. In
addition to the AST of the program, GenProg performs fault localization on the program to find
statements that may potentially be buggy. The output of the fault localization is a weighted path
in the program; that is, each statement has an assigned weight that determines how buggy it is.
GenProg generates program variants by modifying only statements on the weighted path during
its mutation and crossover operations. A mutation consists of inserting, deleting, or swapping a
statement with another statement. A crossover consists of crossing over statements on the weight
paths in two different variants. Also, a fitness function is used to evaluate whether a given program
variant makes it into the next generation. The fitness function gives more weight to variants that
compile and pass more of the regression test cases. GenProg terminates when it finds a program
variant that passes all the regression test cases.

Technique-Specific Gaps

Although GenProg can find fixes for certain faults, it has a number of gaps. First, the tech-
nique is expensive because of the large number of program variants it has to maintain. Second,
because GenProg relies on the assumption that the correct implementation of a given buggy state-
ment is located in some other part of the program, it will fail to find patches for buggy statements
with no corresponding correct implementation. Third, the efficacy of GenProg is based on the
effectiveness of its fault-localization technique. An ineffective fault localization technique will guide
GenProg to other parts of the program that do not need modification and that may prevent Gen-

27

Prog from producing a patch. Fourth, the patches generated by GenProg can be nonsensical, as
discovered by authors of the Par [15] technique. Fifth, GenProg does not perform any kind of
impact analysis to determine whether new test cases need to be developed to test the patch.

4.6 GAPS IN CLEANSING

4.6.1 High-Level Gaps

1. Effective cleansing requires a distinction between benign and malicious states, which has
many of the challenges that exist in attack detection:

(a) Keeping the benign state during the cleansing operation is difficult.

(b) Removing the malicious modifications to the state during cleansing is difficult.

2. Complete cleansing requires the removal of the attacker’s foothold from all system components
(e.g., applications, operating system, firmwares, BIOS, etc.), which is unscalable and time
consuming.

3. Verifying the correctness of cleansing is difficult.

4.6.2 Technique: Self-Cleansing Intrusion Tolerance (SCIT)

Description of Technique

The self-cleansing intrusion tolerance (SCIT) technique [2] is a technique that periodically ro-
tates a virtual machine with its clean copy in order to decrease the exposure time of the system and
remove attacker persistence. A separate system with a network-attached memory stores persistent
short-term information or session data between the systems. The final component is a controller
that manages the rotation of the systems and how long each system copy is exposed. The systems
can be in one of four states: the first state is active where it is online and accepting/handling
requests; the second state is a grace period where it stops accepting new requests and finishes
processing existing requests; the third state is inactive where it is taken offline to be restored; and
the final state is a live spare where the system has been restored and is ready to become active.
There can be either one active server at a time serving one service or multiple active servers serving
multiple services. The latter would require additional algorithms to determine which systems could
be easily brought down next. The systems are rotated on the order of minutes. SCIT has been
applied to protect web servers [2], DNS [9], and other similar servers [10].

Technique-Specific Gaps

SCIT has a number of gaps and weaknesses. First, a technique like SCIT is best suited for
servers that have to maintain minimal state and often serve non-user-changeable content (e.g.,

28

DNS). If the server state changes with user interactions, SCIT faces the difficult task of distin-
guishing between the benign state to keep and the malicious state to discard. Second, SCIT does
not provide any mechanism for making such a distinction in the state that is kept in its network-
attached memory. As such, it is possible that the attacker can persist in that state. Third, SCIT
only removes attacker persistence from the components that are being wiped (i.e., the virtual ma-
chines). If an attacker can compromise the hypervisor or the controller system, it will not be
effective. Fourth, there is no guarantee that the time spent on one server is not enough for at-
tackers to achieve their malicious goal. As a point of fact, given the grace period, an attacker can
prolong the presence on a compromised machine for an arbitrarily long period of time, invalidating
the security guarantees of SCIT [2].

4.7 GAPS IN ACTIVE RESPONSE

4.7.1 High-Level Gaps

1. Active response is only appropriate for a limited class of attacks.

2. Achieving believability in both data and timing for stealth and deception continues to be a
challenge.

3. Active response solutions are not fast or effective in preventing attacker success; existing
techniques fall short of this goal.

4. Active response typically requires higher system and human overheads than simply blocking
an attack.

5. Current active response techniques require an expert human in the loop and customization
to leverage their benefits.

6. Active response requires attribution with high confidence, which is an open problem.

7. Active response may be restricted by rules, regulations, and laws, while the attacks are not
limited by such restrictions.

4.7.2 Technique: Honey-Patching

Description of Technique

Although critically important for cyber defense, patching has a significant drawback once
applied: advertising to the attacker that a targeted vulnerability has been patched. For example,
if a malicious request would have produced garbage output prior to patching but now yields an
error message, the attacker learns that the targeted host and vulnerability have been patched. This
information provides many benefits to attackers. By being able to distinguish between patched
and unpatched systems, attackers can quickly narrow down the pool of target hosts to maximize

29

chances of attack success, meanwhile increasing their own confidence in the expected results of their
attacks.

Honey-patches [1] frustrate attackers’ ability to determine whether their attacks have suc-
ceeded or failed, by pretending that a patched machine is unpatched. It then redirects the attacker
to a decoy honey-server that allows the attack to proceed with apparent success in an isolated
environment. This redirection is achieved by adding a forking mechanism to the original patch
that makes use of Linux’s checkpoint and restore functionality to clone the target container in
user-space. Efficient in-memory redaction cleans the cloned decoy of secrets and replaces them
with fabricated, but realistic, honey-data. Defenders can gain valuable threat insights by instru-
menting the honey-server with aggressive software monitoring to collect forensic information about
the attack and the attacker. In addition, honey-server content can include false information that
deceives and misinforms the attacker about the targeted host and network environment. Together,
these capabilities greatly increase risk of detection and workload for the attacker.

Technique-Specific Gaps

This technique currently requires an ongoing process of manual development by someone
with expert knowledge, as new patches come in and new applications and services are introduced
into the network. While the implementation of forking is trivial for many kinds of patches, it
is not so straightforward for patches that introduce deep changes to the application’s control-
flow or data structures. Transforming such patches into honey-patches requires correspondingly
deeper knowledge of the patch’s semantics. Further, honey-patching is inadvisable entirely for
patches that close vulnerabilities by adding new, legitimate software functionalities, since those
new functionalities increase the attack surface. It is recommended that honey-patching be applied
judiciously based on an assessment of attacker and defender risk. Future work should consider how
to reliably conduct such assessments [1].

Honey-patching is effective only against certain types of attacks. For example, it the attacker’s
goal is to exfiltrate sensitive data by exploiting a vulnerability, honey-patching can be effective.
On the other hand, if the attacker’s goal is to control the machine as a bot in a larger botnet, the
honey container still satisfies the attacker goal, in which case honey-patching is ineffective.

The redaction process also involves a nontrivial manual implementation process that would
best be done by a subject matter expert to minimize the risk of inadvertently leaving sensitive
information accessible to the attacker in the honey-server. In addition, the honey-data that goes
into the redaction process must be designed to be sufficiently realistic to deceive the attacker into
believing that the honey-server is the target host instance. Because every server application has
different forms of sensitive data stored in different ways, the redaction process must be specialized
to each server product and its constituent applications prior to deployment, thus making redaction
very unscalable.

Given this current semi-manual approach to honey-patching, automating the process is a
greatly desirable next step, e.g., by incorporating it into a rewriting tool or compiler. The question

30

of how to validate and/or audit the redaction process for arbitrary software is a challenge that
remains to be addressed.

Operationally, because forking launches a new process in the form of a Linux container, it can
expose the system to denial-of service-attacks. If attackers suspect or wish to find out whether honey-
patching is in place, they could launch their attacks targeting vulnerabilities of interest a massive
number of times in parallel until the physical target host becomes overwhelmed with (1) the number
of spawned processes, and/or (2) memory and processor load due to cloning and redaction.

Thus far, honey-patching has only been developed and tested in the context of the Linux
operating system, with the assumption that the attacker’s targeted host instance exists in the form
of a virtualized Linux Container (LXC). While Windows and Mac OS also provide checkpoint
and restore capabilities, the effectiveness of the proposed honey-patching methodology remains
to be evaluated on these platforms. Windows Server Containers are currently in development by
Microsoft as a parallel to Linux Containers. Expected to be released with Windows Server 2016,
containers on the Windows platform may not be adopted for widespread use for some time [36].

4.7.3 Technique: EKHunter

Description of Technique

EKHunter [7] is a system that can arm the cybercrime analysts with powerful capabilities for
counter-offensive operations against exploit kits (EKs). Its functionality includes discovering and
identifying exploit kits that may be present on a host or website, automatically analyzing the EKs
server-side source code for vulnerabilities (if available, non-obfuscated and non-object-oriented),
and generating exploits that leverage these vulnerabilities. These exploits are then provided as
a toolbox of capabilities that the analyst can choose and configure to suit the investigation and
operational needs. Generated exploits can enable the analyst to do things such as initiate the
takedown of an EK, render the EK harmless, gather intelligence about the EK’s activities, and
deceive the EK admin with false or arbitrary data.

Once the presence of an exploit kit on a given website is verified, EKHunter identifies the
family to which this exploit kit belongs by leveraging the structural and behavioral signatures of
exploit kits that it has previously encountered. To generate exploits for this EK, EKHunter makes
use of multiple existing complementary and high-resolution vulnerability analysis tools to uncover
access control flaws, SQL injection exploits, and various taint-style vulnerabilities in exploit kit
code (e.g., XSS, file manipulation, and command injection). It then analyzes the vulnerable server-
side code to automatically identify and retrieve all conditional statements and other constraints
along each path leading to the vulnerability. Z3, an existing constraint solver, is used to construct
an exploit string that can then be launched as part of an HTTP request. These capabilities are
deployed as part of an exploit execution system that can be customized by the analyst.

31

Technique-Specific Gaps

EKs can easily evade EKHunter if they are developed with object-oriented structure, obfus-
cated, encrypted, or deployed as binaries. Partly because of this limited scope, the authors of this
technique were only able to synthesize exploits for 6 out of 16 EKs that exhibited vulnerabilities
in their proof-of-concept study. The need remains for similar work that addresses obfuscated EK
code and binaries. Mechanisms for discovering vulnerabilities directly in malware binaries [4] may
offer potential solutions in this area.

EKHunter can also be evaded if adversaries patch its targeted vulnerabilities in their EK code.
The vulnerabilities that EKHunter currently looks for are predetermined and static. Focus thus
far has been on relatively low-hanging fruit that is easily patched, such as SQL Injection and File
Manipulation vulnerabilities. EKs are developed by a growing underground software development
industry – as this becomes more sophisticated, and knowledge of EKHunter spreads, EKs will start
to get patched and their code cleaned up. While this is already a win for defenders by raising
the bar for the adversary, additional work is still needed to enable defenders to adapt their use of
EKHunter to the changing EK code landscape in a timely manner to stay ahead of the adversary.

A system for tracking the versioning and patching status of EKs would enable defenders
to stay current on the state of resiliency in specific EKs, so that they can focus their EKHunter
operations on unpatched EK vulnerabilities. In addition, a mechanism for blocking the patching
of already-deployed EKs and blocking new deployments of patched versions may be of interest to
fill this gap.

4.7.4 Technique: B@bel

Description of Technique

B@bel [31] is a mechanism for filtering spam by distinguishing between simple mail transfer
protocol (SMTP) conversations originating in botnets and those coming from legitimate email
senders. This distinction is then used to send poisoned responses – falsely indicating that the
recipient email address does not exist – back to spammers, forcing them to permanently remove
the email address from their list or otherwise face unbounded performance penalties. B@bel is
intended as a lightweight first step for spam mitigation to reduce the load on resource-intensive
content analysis systems.

B@bel’s techniques are based on the observation that there is wide variation in SMTP im-
plementations across email clients. In particular, malicious clients are intentionally developed to
ignore many SMTP standards of syntax and communication exchange in order to maximize the effi-
ciency of botnet-based spam campaigns. For this reason, B@bel takes a machine-learning approach
that uses decision state machines to build classifiers that can differentiate between various SMTP
“dialects” and identify the dialect of any incoming SMTP conversation. This dialect identification
is then leveraged to identify whether an incoming conversation is from a spambot. B@bel is then
applied to filter incoming spam and respond with poisoned feedback to permanently eliminate any

32

further spam from being sent by the originating botmaster to the affected email address.

Technique-Specific Gaps

In practice, B@bel has had limited success, demonstrating high false negative rates (21%) and
providing only a 3.9% overall reduction in spam. Further, feedback poisoning has been effective in
permanently eliminating spam from only 5 out of 29 spam campaigns. Combining this approach
with TCP-level features [3,14] or other attributes of email conversations could yield better results.

Spammers can evade B@bel by using legitimate mail transfer methods to deliver their spam
messages (e.g., Sendmail, Postfix, Exchange), or by taking control of legitimate email accounts.
More work is needed to address spam sent via these channels and clarify the extent to which
spammers use legitimate SMTP clients as opposed to SMTP engines custom built for spamming
efficiency.

Although B@bel appears to scale to hundreds of thousands of email conversations, a formal
analysis of the performance overhead and scalability of this technique has yet to be done.

4.7.5 Technique: Beheading Hydras

Description of Technique

Beheading Hydras [18] addresses the problem of counter-offensive operations against botnets.
The complexity, agility, and resilience of these malicious networks require highly coordinated take-
down efforts involving law enforcement, security operators, and domain registrars, often across
multiple countries. In most cases, takedown methodologies have been ad-hoc and limited by a
lack of knowledge about the behavior of each botnet and its malware. Moreover, recent takedowns
have resulted in collateral damage, bringing to light the need for a rigorous approach and tools to
facilitate these complex, high-risk operations.

The Beheading Hydras technique consists of a takedown analysis and recommendation system,
called rza, that helps analysts plan out effective takedowns of DNS-based command-and-control
(C2) botnets. Rza takes in passive DNS (pDNS) and malware data to provide two functionalities:
(1) enabling a post-mortem analysis of past botnet takedowns, and (2) providing recommendations
on how to successfully execute future takedowns of similar botnets. The pDNS data consists of
mappings between domain names and Internet Protocol (IP) addresses, constructed from real-world
DNS resolutions observed in a large North American Internet Service Provider (ISP). The malware
data, collected from internal dynamic malware analysis output as well as commercial malware feeds,
maps each malware sample’s MD5 sum and binary to the domain names and IP addresses that it
has queried.

Taking into account queries by known malware, shared infrastructure, as well as domain rep-
utation, rza assembles a set of domains that are likely to be malicious. A date range is used to filter
away historic relationships that may be outdated or no longer relevant. Domains that are in the

33

set of Alexa top 10,000 are also filtered out, because they are unlikely to be persistently malicious
and should not be considered for takedown. A malware analysis system [19] is also used to identify
any contingency behaviors that the botnet includes in its malware, such as peer-to-peer (P2P)
structure or domain name generation algorithms (DGA), that would allow the botnet to continue
to function even after its primary C&C infrastructure has been disabled. The postmortem analysis
component provides metrics for quantifying takedown improvement and estimating the potential
risk of collateral damage.

Technique-Specific Gaps

While rza can identify the presence of P2P and DGA contingency behaviors, it does not
offer analysis or recommendations for takedowns of botnets that employ them. P2P and DGA-
based botnets use forms of nondeterministic behavior to their advantage, such as the randomness
seed in DGAs and the peer enumeration and selection algorithms in P2Ps, which makes them far
more resilient to takedown attempts than centralized C&C botnets. Related work in assessing the
properties and vulnerabilities of P2P botnets [27] may be of service towards developing counter-
offensive strategies and automated active response solutions in this area.

The use of a date range to remove outdated historic relationships raises the question of how
to choose an optimal timeframe that does not miss valuable information. Such considerations must
take into account the possibility of dormant botnets or those that are strategically timed. The
choice of timeframe is perhaps best made on a case-by-case basis, given the particular history
of each individual botnet. Alternate filtering mechanisms that can correlate more reliably with
outdated relationships remain to be explored.

Another persisting challenge is that ground truth is difficult to obtain, which limits the ability
to evaluate the accuracy of rza’s takedown recommendation engine, as well as the effectiveness of
its risk and improvement metrics.

Even though rza provides analysis that supports counter-offensive operations, it leaves the
actual decision making and takedown activities to the human-in-the-loop takedown teams. A
centralized platform for coordinating takedowns would greatly facilitate takedown operations by
these teams. Automated active response systems for botnet takedowns are yet to be developed; rza
may offer insights and capabilities that can inform the design of such systems.

34

5. SUMMARY OF RESEARCH DIRECTIONS AND PRIORITIZATION

To develop a gap prioritization, we have used a two-step process. First, to prioritize among
different components of a CDA system, we analyzed the dependencies among such components.
Components that are at the root of the dependency tree, i.e., that many other components depend
on, have higher priorities for research because without addressing their major gaps, there is little
hope in effectively deploying other dependent components. For example, blocking depends on
successful detection of attacks or vulnerabilities. Figure 2 illustrates the dependency graph for
the CDA components. Note that cleansing does not depend on other components as it can be
performed periodically, even without successful detection of an attack.

Second, in order to prioritize the gaps within a component, each team member voted based
on her/his expert knowledge on what gaps should be ranked high, medium, and low. Although
these rankings did not always match exactly, there was majority agreement over the priorities. In
order to develop the final priorities, we met, discussed, and debated various technical and practical
justifications for the rankings. We attempted to identify the major hindrances in each component
that have traditionally prevented its widespread deployment in real systems. In some cases, many
techniques exist for a component (e.g., detection), but they all share a common weakness (e.g., high
false positive rates) that make them inappropriate for CDA systems. In other cases, implementing
an effective technique for a CDA component relies on solving an open problem that has impeded
significant advances in that area. For example, analyzing the side effects of an automatically gener-
ated patch relies on accurate code equivalence analysis, which is a known open problem in software
analysis. In the discussion of the research directions, we also provide the major justifications for
the research priorities for each CDA component.

Table 1 enumerates the gaps and research priorities for various CDA components. In the
short term, we recommend the following research effort for high-priority gaps.

Blocking Analysis

Cleansing

Recovery Patching Active Response

Detection

Figure 2. CDA component dependencies.

35

For the vulnerability detection component, we recommend that research efforts focus on
designing techniques with low false positive rates. Our justification for choosing this as a high-
priority research area is based on the fact that although numerous vulnerability detection techniques
exist, they all suffer from high false positives. This is a fatal weakness for CDA systems because
automated responses based on a false positive are undesirable and will lead to operators who ignore
the detection system. As a result, we believe that addressing the gap of high false positives and the
necessary manual effort has the highest priorities in this area. Moreover, efforts should also focus on
faster vulnerability triaging techniques that can analyze the impact and priority of a vulnerability
in an automated fashion.

For the blocking component, we recommend that research efforts focus on developing scalable,
automated mechanisms. Developing scalable and automated solutions was chosen as a high priority
given that most modern systems are complex and integrated with other systems; as such, any
blocking technique that does not allow or plan for this is unacceptable. Since blocking is one of the
first stages in a comprehensive response, it may be acceptable if the mechanism is not complete
or if it results in mission degradation. It is, however, crucial that the blocking mechanism be
automated and applicable to large networks, as those goals constitute the main motivation behind
the existence of a blocking mechanism.

For the recovery component, given that current techniques often refer to blocking or cleansing
as recovery, we recommend that research efforts focus on developing new recovery techniques for
different parts of a system (e.g., software applications, databases, and operating systems). In
this way, true recovery across an entire platform can be achieved. Moreover, we recommend that
high priority be given to reliable and accurate recovery techniques in a single system, before such
techniques can be applied to broader distributed systems. Since some grace period is often allocated
for recovery, it may be acceptable if some techniques in this domain have an overhead that is larger
than ideal.

For the patching component, given that finding the location of code error is difficult across
most applications, we recommend that research focus on optimizing fault (e.g., vulnerability) local-
ization techniques. In addition, given that most patches often have unknown side effects, research
examining new automated test development techniques that can better assess the effectiveness and
side effects of automatically developed patches are of crucial importance.

Though there are few published papers focused on cleansing, as most servers have changing
content, distinguishing between benign and malicious states is difficult. As such, we recommend
that research focus on proper sanitization techniques to distinguish benign and malicious states.
Data provenance techniques may be applicable in this area, as they can potentially identify all
benign data on a system.

For the active response component, it is important to consider that the attacker is a human
and can easily detect deception or decoy methods. As such, we recommend that short-term research
focuses on evaluating the believability of existing deception and decoy techniques. Although many
deception techniques have been proposed in the literature, little work has been done on evaluating
their believability. Moreover, research should also focus on identifying which classes of attacks
can benefit from deception/active response. More specifically, although known examples exist

36

for each class, little has been done on classifying applicable and non-applicable attack classes for
active response. This distinction is important to ensure that techniques are not deployed with the
assumption that they are a one-size-fits-all approach.

37

TABLE 1

CDA Component Priorities

Component Gap Priority

Detection

H
H
M

(1) Has high false positive rates
(2) Is mostly manual
(3) Is not scalable or efficient
(4) Can be used by attackers L

Blocking

H
H
M
M

(1) Is unscalable
(2) Requires heavy manual effort
(3) Is often bypassable
(4) Can be limited by mission impact
(5) Is overspecialized L

Recovery

H
H
M

(1) Is rare
(2) Is imperfect (e.g., lacks reliability and accuracy)
(3) Is difficult to test effectiveness and side effects
(4) Requires manual effort to build templates L

Patching

H
H

M
M

(1) Is unscalable
(2) Has unknown functionality impact (e.g., little is known about
the effectiveness and side effects of patches)
(3) Has inadequate testing mechanisms
(4) Is difficult to automatically generate tests
(5) Is difficult to automatically determine pass/fail of test cases M

Cleansing
H
M

(1) Is difficult to distinguish between benign and malicious
(2) Is difficult to accomplish completely
(3) Is difficult to verify correctness M

Active

H
H
M

Response M
M
L

(1) Applies to limited classes of attacks
(2) Is difficult to make believable
(3) Is not fast and effective
(4) Requires heavy manual effort
(5) Requires a human-in-the-loop and customization
(6) Requires attribution
(7) Is restricted by regulations L

This page intentionally left blank.

6. CONCLUSION

In this report, we have identified the major gaps in building a cyber defense automation
(CDA) system. The vision of a CDA system is to achieve a self-healing, self-immunizing system
that can provide fast responses to mitigate the immediate impact of attacks and recover to full
functionality. Such a system will include seven major components: attack/vulnerability detection,
attack/vulnerability analysis, impact blocking, recovery, vulnerability patching, system cleansing,
and optionally, an active response component (e.g., deception or counterattack). We identified the
high priority gaps in building a CDA system by reviewing the state-of-the-art techniques proposed
or built in this domain, extracting their implicit or explicit gaps and weaknesses, and raking those
gaps based on the dependencies that exist among CDA components and the subject matter expert
knowledge of the fundamental research problems. We believe that by focusing the short-term
research on the high priority gaps, the community can make major headway in achieving the vision
of a self-healing, self-immunizing system.

39

This page intentionally left blank.

REFERENCES

[1] Frederico Araujo, Kevin W. Hamlen, Sebastian Biedermann, and Stefan Katzenbeisser. From
patches to honey-patches: Lightweight attacker misdirection, deception, and disinformation.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, pages 942–953, New York, NY, USA, 2014. ACM.

[2] Anantha K Bangalore and Arun K Sood. Securing web servers using self cleansing intrusion
tolerance (scit). In Dependability, 2009. DEPEND’09. Second International Conference on,
pages 60–65. IEEE, 2009.

[3] Robert Beverly and Karen R. Sollins. Exploiting transport-level characteristics of spam. In
Collaboration, Electronic Messaging, Anti-Abuse, and Spam Conference, CEAS ’08, 2008.

[4] Juan Caballero, Pongsin Poosankam, Stephen McCamant, Domagoj Babi ć, and Dawn Song.
Input generation via decomposition and re-stitching: Finding bugs in malware. In Proceedings
of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pages
413–425, New York, NY, USA, 2010. ACM.

[5] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleashing may-
hem on binary code. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 380–394, Washington, DC, USA, 2012. IEEE Computer Society.

[6] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleashing may-
hem on binary code. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 380–394, Washington, DC, USA, 2012. IEEE Computer Society.

[7] Birhanu Eshete, Abeer Alhuzali, Maliheh Monshizadeh, Phillip Porras, VN Venkatakrishnan,
and Vinod Yegneswaran. Ekhunter: A counter-offensive toolkit for exploit kit infiltration.
In Proc. 22nd Annual Network and Distributed System Security Symposium (NDSS’15). The
Internet Society, 2015.

[8] Mario Heiderich, Tilman Frosch, and Thorsten Holz. IceShield: Detection and Mitigation
of Malicious Websites with a Frozen DOM, volume 6961, pages 281–300. Springer Berlin
Heidelberg, 2011.

[9] Yih Huang, David Arsenault, and Arun Sood. Incorruptible self-cleansing intrusion tolerance
and its application to dns security. Journal of Networks, 1(5):21–30, 2006.

[10] Yih Huang and Arun Sood. Self-cleansing systems for intrusion containment. In Proceedings
of workshop on self-healing, adaptive, and self-managed systems (SHAMAN), 2002.

[11] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. Jackstraws: Picking
command and control connections from bot traffic. In Proceedings of the 20th USENIX Con-
ference on Security, SEC’11, pages 29–29, Berkeley, CA, USA, 2011. USENIX Association.

[12] Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: Finding unpatched code clones
in entire OS distributions. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May
2012, San Francisco, California, USA, pages 48–62, 2012.

41

[13] Richard Joiner, Thomas Reps, Somesh Jha, Mohan Dhawan, and Vinod Ganapathy. Efficient
runtime-enforcement techniques for policy weaving. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pages 224–234,
New York, NY, USA, 2014. ACM.

[14] Georgios Kakavelakis, Robert Beverly, and Joel Young. Auto-learning of smtp tcp transport-
layer features for spam and abusive message detection. In Proceedings of the 25th International
Conference on Large Installation System Administration, LISA’11, pages 18–18, Berkeley, CA,
USA, 2011. USENIX Association.

[15] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 802–811, Piscataway, NJ, USA, 2013. IEEE Press.

[16] Sebastian Lekies, Nick Nikiforakis, Walter Tighzert, Frank Piessens, and Martin Johns.
DEMACRO: Defense against Malicious Cross-Domain Requests, volume 7462, pages 254–273.
Springer Berlin Heidelberg, 2012.

[17] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda. Patchdroid: Scalable
third-party security patches for android devices. In Proceedings of the 29th Annual Computer
Security Applications Conference, ACSAC ’13, pages 259–268, New York, NY, USA, 2013.
ACM.

[18] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, David Dagon, and Wenke Lee. Beheading
hydras: Performing effective botnet takedowns. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pages 121–132, New
York, NY, USA, 2013. ACM.

[19] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. Understanding the preva-
lence and use of alternative plans in malware with network games. In Proceedings of the 27th
Annual Computer Security Applications Conference, ACSAC ’11, pages 1–10, New York, NY,
USA, 2011. ACM.

[20] Yacin Nadji, Jonathon Giffin, and Patrick Traynor. Automated remote repair for mobile mal-
ware. In Proceedings of the 27th Annual Computer Security Applications Conference, ACSAC
’11, pages 413–422, New York, NY, USA, 2011. ACM.

[21] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Semfix:
Program repair via semantic analysis. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 772–781, Piscataway, NJ, USA, 2013. IEEE Press.

[22] Hamed Okhravi, Thomas Hobson, Chad Meiners, and William Streilein. A study of gaps in
attack analysis. Technical report 1193, MIT Lincoln Laboratory, 2016.

[23] Alessandro Orso and Gregg Rothermel. Software testing: A research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
pages 117–132, New York, NY, USA, 2014. ACM.

42

[24] Sirinda Palahan, Domagoj Babic, Swarat Chaudhuri, and Daniel Kifer. Extraction of statis-
tically significant malware behaviors. In Annual Computer Security Applications Conference,
ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013, pages 69–78, 2013.

[25] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael
Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong,
Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically patching errors in deployed
software. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, pages 87–102, New York, NY, USA, 2009. ACM.

[26] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of the 19th
International Symposium on Software Testing and Analysis (ISSTA 2015), 2015.

[27] Christian Rossow, Dennis Andriesse, Tillmann Werner, Brett Stone-Gross, Daniel Plohmann,
Christian J. Dietrich, and Herbert Bos. Sok: P2pwned - modeling and evaluating the resilience
of peer-to-peer botnets. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 97–111, Washington, DC, USA, 2013. IEEE Computer Society.

[28] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin. Automatic error elimination
by horizontal code transfer across multiple applications. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, June 2015.

[29] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Fix me up: Repairing access-control
bugs in web applications. In NDSS, 2013.

[30] Kyle Soska and Nicolas Christin. Automatically detecting vulnerable websites before they turn
malicious. In 23rd USENIX Security Symposium (USENIX Security 14), pages 625–640, San
Diego, CA, August 2014. USENIX Association.

[31] Gianluca Stringhini, Manuel Egele, Apostolis Zarras, Thorsten Holz, Christopher Kruegel, and
Giovanni Vigna. B@bel: Leveraging email delivery for spam mitigation. In Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12), pages 16–32, Bellevue, WA,
2012. USENIX.

[32] Ruowen Wang, Peng Ning, Tao Xie, and Quan Chen. Metasymploit: Day-one defense against
script-based attacks with security-enhanced symbolic analysis. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13), pages 65–80, Washington, D.C., 2013.
USENIX.

[33] Xueqiang Wang, Kun Sun, Yuewu Wang, and Jiwu Jing. Deepdroid: Dynamically enforcing
enterprise policy on android devices. In Proc. 22nd Annual Network and Distributed System
Security Symposium (NDSS’15). The Internet Society, 2015.

[34] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, pages 364–374, Washington, DC, USA, 2009. IEEE
Computer Society.

43

[35] Yunjing Xu, Michael Bailey, Eric Vander Weele, and Farnam Jahanian. Canvus: Context-
aware network vulnerability scanning. In Somesh Jha, Robin Sommer, and Christian Kreibich,
editors, Recent Advances in Intrusion Detection, volume 6307 of Lecture Notes in Computer
Science, pages 138–157. Springer Berlin Heidelberg, 2010.

[36] Jason Zander. New windows server containers and azure sup-
port for docker. http://azure.microsoft.com/blog/2014/10/15/

new-windows-server-containers-and-azure-support-for-docker/?WT.mc_id=Blog_

ServerCloud_Announce_TTD, 2014.

[37] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis. Self-healing multitier archi-
tectures using cascading rescue points. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 379–388, New York, NY, USA, 2012. ACM.

[38] Mu Zhang and Heng Yin. Appsealer: Automatic generation of vulnerability-specific patches
for preventing component hijacking attacks in android applications. Proceedings of the 21th
Annual Network and Distributed System Security Symposium (NDSS 2014), 2014.

44

http://azure.microsoft.com/blog/2014/10/15/new-windows-server-containers-and-azure-support-for-docker/?WT.mc_id=Blog_ServerCloud_Announce_TTD
http://azure.microsoft.com/blog/2014/10/15/new-windows-server-containers-and-azure-support-for-docker/?WT.mc_id=Blog_ServerCloud_Announce_TTD
http://azure.microsoft.com/blog/2014/10/15/new-windows-server-containers-and-azure-support-for-docker/?WT.mc_id=Blog_ServerCloud_Announce_TTD

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

13-10-2016
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8721-05-C-0002 & FA8702-15-D-0001

A Study of Gaps in Cyber Defense Automation 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
2486

G.K. Baah, T. Hobson, H. Okhravi, S.C. Roberts, W.W. Streilein, and S.C. Yuditskaya 5e. TASK NUMBER
272

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

TR-1194

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Life Cycle Management Center (AFLCMC/AZS)

9
AFLCMC/AZS

20 Schilling Circle, Bldg. 1305, 3rd Floor
Hanscom Air Force Base

11. SPONSOR/MONITOR’S REPORT
Bedford, MA 01731 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Cyber defense automation (CDA) refers to automated response and recovery from cyber attacks while still preserving a certain level of
mission functionality. The vision of CDA research is to build self-healing, self-immunizing systems. Seven major components are
necessary to achieve this vision: attack/vulnerability detection, attack/vulnerability analysis, impact blocking, recovery, vulnerability
patching, system cleansing, and an optional active response component (e.g., deception or counterattack). In this report, by reviewing the
state of the art for each of these components, we identify high-priority, short-term research objectives for CDA components, which includes
designing low false positive vulnerability detection techniques, developing scalable and fast-impact blocking mechanisms, accurately
identifying the location of vulnerabilities, developing new roll-back techniques, evaluating various deception options, and using sanitization
techniques for improved cleansing of compromised systems. These efforts will constitute the basic blocks of an effective and automated
CDA system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Same as report 57 19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	TR-1194: A Study of Gaps in Cyber Defense Automation
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Goals
	Scope

	Overview of a cyber defense automation System
	Methodology
	Gap Discovery Process
	Gap Selection Process
	Gap Treatment and Classification Process
	Gap Prioritization Process

	Gaps and Research Directions
	Gaps in Vulnerability Detection
	Gaps in Attack/Vulnerability Analysis
	Gaps in Blocking
	Gaps in Recovery
	Gaps in Patching
	Gaps in Cleansing
	Gaps in Active Response

	Summary of Research Directions and Prioritization
	Conclusion
	References

